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S-matrices in integrable models of isotropic 
magnetic chains: I* 

N Reshetikhin 
Department of Mathematics, Harvard University, Cambridge MA 02138, USA 

Received 21 September 1990, in final form 16 April 1991 

Abstract. We show the space of n-magnon stater in integrable isotropic models of magnetic 
chains, the structure of the space of states in the RSOS model. The S-matrix in there models 
is described in terms of weights in integrable RSOS models. 

1. Introduction 

During the last few years many works were written regarding the studies of integrable 
Heisenberg magnetics of XXX-type of spin S. This model at S = coincides with the 
usual Heisenberg magnet [l]. For S>f ,  this model related to SU(2) invariant solutions 
of the Yang-Baxter equation [23. This relation was based on  well known relations 
between I D  quantum field theory and 2~ classical statistical mechanics [3]. 

One of the most interesting properties of these models is their critical behaviour. 
The infrared asymptotics of correlators in these models are described by conformal 
field theory with the central charge c = 3 S / S +  1, where S is the spin of the magnet. 
This value of the central charge correspondss to the SU(2) Wess-Zumino-Witten 
conformal field theory of the level k = 2s. 

The approach based on the solutions of the Yang-Baxter equations is very effective 
for the study of quantum integrable systems and it is known as the quantum inverse 
scattering method [5,6]. This method is very effective for further generalizations of 
the Heisenberg models. In this specific case when individual spins transform according 
to certain representations of any simple Lie algebras [7-91. Obviously these solutions 
off the Yang-Baxter equations can be considered as representations of certain Hopf 
algebras known as Yangians [ 10,111. 

In many papers devoted to various aspects of %invariant magnet where B is a Lie 
algebra this anomaly was observed in dimensions of states of physical particles. The 
dimensions of n-magnon space in this model cannot be described as 9" where 9 is 
the dimension of 1-magnon space. It is also less than any considered subspace which 
is invariant under the action of any natural symmetry. In [12] quasiclassical arguments 
were given explaining this anomaly for S = 1 as a consequence of the fermionic anomaly 
[ i j j ,  Here the iast iactor is the S-matrix in the chirai Gross-Neve modei ji6j ana the 
matrix S(RSoS' is defined in terms of Boltzmann weights of the critical RSOS model 
[17]. These matrices are described in the next section. 
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2. SU(2)-invariant magnet 

The Hamiltonian of the integrable XXX Heisenberg magnet of the spin S acts in the 
space ZN = and has the following form 

2s 2s 1 2s x-x, 
Ps(x)=2 1 1 - n - 

1-0 k = l + l  kj+hXi-Xj 
j = 0  

has the degree 2s. Here x , = ~ l ( l + l ) - S ( S + l ) .  
The Hamiltonian is a logarithmic derivative of the transfer matrix of the vertex model 

H=-log r(u)l.=o t(U)=tro(Rol(u).  . . RON(u)) (2.3) 

where Ro,(u) is a standard notation for the ( 2 S + I ) x ( 2 S + l )  matrix R(u) acting 

SU(Z)-invariant solution of the Yang-Baxter equation [2] 

d 
du 

nnn-triviz!!y only in 0th znd i?h fzr.aors of ! @ S + ' ) @ ( N + ' ) .  c.e mz!riX E ( . )  is 2 

where xj is defined above and u = Z z = ,  S"OS"=SOS.  
As was shown in [18] the spectrum of the transfer-matrix (2.3) and of the Hamil- 

tonian (2.1) is parametrized by solutions of so-called Bethe equations. This is the 
system of equations for n complex numbers aj 

The eigenvalues of H corresponding to the solution U,. . . a. aret  
n 

E = - X  2s 2 (2.6) 
j = l  a j + S 2 '  

The operator 

t ( O ) =  P t 2 . .  . P;rr 

where e, is the permutation of ith and j t h  factors in (@2St')@',  gives the translation 
operator. The momentum of the stare is natural to define as eigenvalues of l j i  log r(0). 
This operator commutes with H and has the eigenvalue 

K = 2 tan-'(:) 
j - i  \ " I  

on the state parametrized by numbers a l . .  . . , a.. 

t The eigenvalue corresponding to each solution of (1.5) with fixed n is degenerate with degree 2(NS- n ) +  I 
[ 191. The corresponding eigenspace is the space of the irreducible representation of SU(2) of the spin NS - n. 



Integrable models of isotropic magnetic chains: I 3301 

In the thermodynamical limit N + m solutions of the system (2.5) have so-called 
has the string behaviour. This means that for fixed n in this limit each solution 

form 

Moreover, almost any solution of the system (2.5) has such a structure if N - .  m, 
n / N < S t .  In this limit, numbers ajk1 (centres of strings) become distributed along 
the real axis with densities p k ( A ) ,  such that p k ( A )  dA is the number of a:”’ in the 
interval dA. According to the classical work by Yang and Yang [25]  one can introduce 
the density of holes & ( A ) .  In the thermodynamic limit the system (2.5) gives the system 
of integral equations for densities pk(A\) and j k ( A )  

a.&) = in ( A )  + Ank * p k ( A )  (2.7) 
k=o 

where functions a.,,$(A) and A, , (A)  are defined in the appendix, 
t m  

a ( A - p ) b ( p )  dp .  

The energy and momentum of the thermodynamic state characterized by densities 
pi(.\) have the form 

rtm 

(2.7‘) 

It is known [18, 211 that the ground state of the model is a Dirac sea of 2s-strings. 
Thermodynamically this means that in the ground state the density pZS(A)  is finite, 
F z s ( A ) = O  and p j ( A ) = O  for any j#ZS. Therefore densities j Z s ( A )  and p j ( A )  have to 
be considered as the densities of excitations. Using system (2.7) one can express p2%(A)  
in terms of CzS(A)  and p j ( A )  with j f 2 S .  Substituting this expression into (2.7’) we can 
find the energy and momentum of the thermodynamic states as a function of densities 
of excitations over the ground state. We obtain the following result 

t m  

€ ( p ) = - N & , + N  s ( a ) ~ 2 S ( r r ) d r r  

K ( P ) =  N P ( U ) C ~ S ( ~ )  d a  (2.8) 

..=-I-, a 2 S . Z S ( ~ ) 4 a ) d ~  

L 
+m 

+m 

where s ( a )  is defined in the appendix. This formula shows that j-strings with j # 2 s  
have zero energy and momentum. The hole in 2s-strings has the dispersion 

(2.8”) 

t ‘Almost’ means that the number of other solutions (which exist as shown for example in [ZO]) is sufficiently 
small and does not give a contribution to the leading asymptotics of distributions of observabler in the 
thermodynamical limit. 
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where E and p are the energy and momentum, respectively. Therefore they describe 
the degeneration of state. 

As a first step in evaluation of scattering amplitudes let us transform system (2.7) 
in the following way: 

(2.8') 

a . - 2 ~ . I * b 2 S = F * - 2 ~ +  Z A . - 2 s , m - 2 s * ~ m  n > 2 S  
m z i  

where functions a!&l, A:A(A) are given in the appendix. In this system we separate 
macroscopic densities p2s, bn, n # 2 s  over the ground state from microscopic ones. 

We will search now for the scattering amplitudes in the model using thermodynamic 
arguments (see, for example, [SI). The main idea is the following. Let us suppose that 
we have the system in sufficiently large but finite volume. From this we can derive the 
thermodynamic behaviour of the system from the finite volume quantization of momen- 
tums of physical excitations. Let kj be momentums of these excitations. In the finite 
volume N of our magnetic chain (N is the number of atoms) we will have the following 
equations for 4 [22,23]: 

exp(ikjN)c=S,+,(kj, k,,,) ... Sj,(k,, k,)Sj,(kj, k,)...S,-l(k,, kj+,)c (2.9) 

where S,,(kj, k,) is the amplitude of the scattering of the magnon k, on the magnon k,, 
and 6 is the scattering state. 

To find the system of equations for momentum k, we have to diagonalize the 
matrices in the RHS of (2.9). Because our system is integrable, the amplitudes Sq(k k') 
satisfy the Yang-Baxter equation and the problem of diagonalization of matrices on 
the RHS is equivalent to the problem of diagonalization of the following transfer matrix 
~ 4 1  

t (k)  = tro S d S  kl) . . . so, (S k, ). 

Therefore we have to recognize the amplitudes S(k, k') from the system (2.8) in 
order to find the matrix S(k, k') to give us this system from (2.9) with the limits N+ m, 
m + 00 and m/ N = fixed. 

The following result was obtained in [18] for two magnon states: there are four 
two-magnon states. This four-dimensional space is a tensor product of two representa- 
tions of SU(2) of the spin-f (each representation describes isotopical states of magnons). 
The amplitude has the form 

sinh( 2 ( A  -i)) 

sinh -((A+i) 
S(A)= S,(A; S)'Si'/2'1'2' ( A ) .  (2.10) 

Here ~ i l I 2 . l / 2 1  IS ' the factorized unitary, crossing-symmetrical S-matrix for particles 
(& 1 

with spin 1/2 (it is the matrix in C20C2)  

r(-iA/2)I'(( 1 +iA)/2) A -iP ~ ' " 2 . 1 1 2 '  

(")=~(+iA/2)r(( l - iA)/2)  A-i 
(2.11) 
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where P is the permutation matrix; P ( x O y )  = y O x ,  and 

"sin Ax sinh((S-f)x) 
s,(A; s) = exp( -i I, - 

x cosh(x/2) sinh Sx 

It is easy to see that the multiplier .$,(A; S) sinh(~r/4S(A -i))/sinh(x/4S(A+i)) 
coincides with one of the eigenvalues of the two-particle ampliutde for the sineGordon 
model. Therefore the simplest conjecture about the structure of the S-matrix in the 
model (2.1) is 

S(A) = SS"(A; S)@S"'2,1'2' ( A )  (2.12) 

where 

SSG(A; S) = 
S) (( sinh( 5 ( A  -i)) +sinh($ A))lO 1) 

x (u+Ou-+u-Ou+)) I 

and U', U* are Pauli matrices. 
This S-matrix corresponds to the following structure of the n-particle space 

2" = (C2)@nO(@2)@". (2.13) 

But this interpretation is not correct. It is easy to show [15] that the dimension of Xm 
are less than 4" :2" <dim 2" <4" and therefore (2.13) cannot be isomorphic to n- 
particle space. 

Let us find the system of integral equations for thermodynamical densities corre- 
sponding to the conjecture (2.12). From equation (2.9) together with the dispersion 
(2.8") in the thermodynamic limit, we arrive at the following system: 

(2.14) 2s--1 

ai:?l * p = 6i + ut - a2* ui+ 1 s * A::?~,, * U,,, 
, = I  

a m * ~ = b m +  1 
m s l  

where the functions a,, a:'), A., and A;:' are the same as in (2.8'). Here p is the 
density of the magnons, and c is the density of holes in the distribution of magnons 
[25]. The densities pn, b,, and U,,, Gn respectively appear in the diagonalization of the 
product of ieit and right factors of the two-panicie S-matrix (see, for exampie, 
[8,22,231). 

Obviously this system will coincide with (2.8) if we identify p , & 6 . . , u . ,  n = 
I , .  . , ,2S-1,  in, p., n 2 1 with ,62s, pis, bn, p., n = 1, .  . . , 2 S - 1 , ~ ~ + 2 s .  p.+2S, n a  1, 
respectively, and if we suppose that 6 = uI = 0 (in this case there is no equation for 
uI in (2.14)). This means the space of physical excitations of model (2.1) is the subspace 
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of (2.13). If we make such a conjecture we have to describe the restriction q = O  on 
the microscopic level, and at that point we will experience major problems. It is an 
unknown microscopic restriction which gives the states with q = O  in the thermo- 
dynamic limits. 

Now it is time to remember that we know the restriction which is not exactly the 
same, but very similar. In [26] it was shown that the spectrum of the transfer matrix 
of the critical RSOS model can be obtained from the spectrum of the transfer matrix 
..&-.LA L ...-A-, :.-...--__> 
U1 LUG " - " s L L c i *  lllUUcil 11 W G  p", 

u 2 2 s ~ I = ~ 2 2 s ~ I = u 2 s ~ 2 = q = ~ = o  

in the thermodynamic limit. 
Let us use this fact for the interpretation of the integral equations (2.8). 

Conjecture. (1) The n-particle space in the model (2.1) over physical vacuum is 
isomorphic to the tensor product 

Z" = Zys@(c2)@" (2.15) 

where X f S o s  is the space of sequences ( a o ,  a , ,  a 2 , .  . . , a n - , )  with a i - , l f ,  O <  aj < S, 
a - a  = n 0 - 0 .  

(2) If € ( a , ,  a , ,  . . . , a n - l )  is the basis in ZfSos the action oftwo-particle amplitude 
on the basis 

E (ao ,  a , ,  . . . , a.- , )@ ej,@. . .@ e{,, 

in ( 2 1 5 )  has the form 

Sj+,(A)(E(aoa1 . . . a. - , )@ek,O.  . .O eh.) 

where non-zero weights a [ c ( A )  are 1 
1 

b 

d 

1-1 ( A ) = S , ( A ,  S+1)  
I-f 

I - f  

(2.16) 



Integrable models of isotropic magnetic chains: I 3305 

sinh(&)( sin(-)sm( 2 s + 2  2alA . 2s+2 (2 I + 2))) 

s i n ( ~ + 2 ( 2 1 +  a l))sinh(& ( A  - i)) 
- - S,(A, S+ I ) .  (2.17) 

Almost proof of the conjecture. Let us find the integral equations which follow from 
(2.9) in the thermodynamical limit. Conjecture will be almost proven if these equations 
will coincide with (2.8). 

Using the result of [26] one can show that equation (2.9) gives the following system 
of linear integral equations if S(k, k) is the matrix (2.16). 

2.7 

(2.18) s = b + p - ~ * p - ~ ' ~ ~ + ~ ) * p +  1 a, (2s-2) *U,+ 1 a m * p m  
m = ,  k r  I 

a m * P = b m f  1 Amk*Pk. 
k a l  

Here p is the density of magnons and b is the density of holes in the distribution of 
magnons. Densities bn, p. and Gn, un describe the diagonalization of the product of 
matrices (2.16) in the RHS of (2.9). The functions B and B'2s) are give in the appendix 
and, as follows from [26], ZZs 

As in the RSOS model we can exclude the density uZs from the system (2.18). After 
this and after the identification p, b, Gm, um, m = 1, . . . , 2 S  - 1, bn, p,,, n 2 1 in (2.18) 
with bZs, pzs, &, pm, m = 1,. . . , 2 S  - 1, b", p., n 3 1 in (2.8) respectively, we obtain 
the system (2.8) from (2.18). 

Therefore wecanconclude that (2.16) is the most reasonableanswer forthe S-matrix 
in the integrable Heisenberg model of the spin S. 

Let us make a few remarks about the consequences of this fact. 

0. 

Remark 1 .  In the case S = 1 there is a hidden supersymmetry of the model. It follows 
from the fact that in this case RSOS part of Hilbert space will be isomorphic to the 
space of states in the critical king model and the action of the supersymmetry will 
coincide as described by Zamelodchikov in [27]. The value of the central charge in 
this situation perfectly reflects the fermionic structure of the model 

e =;=;+ 1. 
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Remark 2. The relation between the value of the central charge in the RSOS model 
and in the XXX model of the spin S is now clear. The first one is equal to 2 - 6 / r  
(where r is the restriction parameter in the RSOS model), the last one is equal to the 
3S/(S+1).  If we put r = 2 S + 2  we will have 

3 ( r - 2 )  6 
r r 

~- -2--+1. 

This formula reflects the contribution to the value of the central charge of the factors 
in the Hilbert space: 2- (6/r) from the RSOS factor and 1 from the spin-; factor in (2.16). 

Remark 3. The dimension of the n-magnon space (2.15) can be evaluated in the 
following form: 

2 S t l  

t ,,..., ?".,=I 
dim ~ ' '  = 2 K, , ,K , , , ,  . . . Ki ".*, 2" (2.19) 

where K is the matrix ( 2 S +  1) x ( 2 S +  1): 

0 1 0 ... 0 

Let $(CY) ,  (Y = 1,. . . , 2 S +  1, be the eigenvectors of K :  

K$(CY)=2cos(=)$(CY) 2s+2 

sin(mn/(ZS+Z)) 
Js+l $.(.I= 

Substituting in (2.19), the spectral decomposition of the matrix K,  we have: 

. (2 cos( 2))". 2". 
*s+' sin2(?ia/(2s+2)) 
* - I  s+ 1 

dim & " I =  1 

( a )  In the limit n + 00 we have 

which agrees with the thermodynamical computations of low-temperature behaviour 
of the entropy [26]. 

( b )  If n is fixed, and S is sufficeintly large 

dim %"'=dim(Wb"').2" 

where dim W r '  is the multiplicity of one dimensional subrepresentation in the tensor 
product of n representations of SU(2) of the spin-f [ Z O ] .  
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( e )  If S= 1, we have: 
dim = 2"/'-1.2" 

this is an integer because n is always even. The formula (2.15) agrees with result given 
in [12]. 

3. Conclusion 

The arguments in section 2 can also be used for derivation of the S-matrix in integrable 
models of magnets related to any simple Lie algebra. Some of these models are described 
in [7] for classical Lie algebras. Other examples can be found in [9]. 

Let me announce here the following result. Suppose that the ground state of the 
model related to simple Lie algebra 9 is the Dirac sea, and is formed by p strings on 
each level of the Bethe-ansatz equations. It is well known that the physical excitations 
in this case will be holes in the Dirac sea. The number of excitations will be equal to 
the rank of the algebra. 

Analysis of integral equations for densities in the thermodynamic limit of the Bethe 
equations gives the following structure of the S-matrix for simple-laced Lie algebras. 

The space of n-particle space is the tensor product of two factors. The first one is 
the space of states of the IRF model [32] related to the algebra 9 with the restriction 
parameter r = p + h where h is the dual Coxeter number. The second factor is isomorphic 
to V"is0.. .O V"ifi where jm are types of excitations on the state, oj is the j th  funda- 
mental weight of the Lie algebra 9 and V-1 is the irreducible representation of 9 with 
highest weight oj. 

The S-matrix of the model with respect to factorization of the Hilbert space of the 
model is the tensor product of two factors. The first one gives the IRF factor [32] in 
the two-particle amplitude, and thhe second factor of the S-matrix gives the usual 
chiral Gross-Neveu factor in the S-matrix. 

The same structure of the S-matrix has trigonometric generalizations of %invariant 
models. The simplest example of these models is the XXZ model of the spin S [5, 
281. Let A be the parameter of anisotropy. If A <  1 or if A=cos y and S < r / y  
( O <  y <  71/2), the S-matrix has the same structure as (2.16), but the second factor 
becomes the two-particle amplitude for the SG model. The details will be published 
separately. 

One can show that the inhomogeneous xxx model of spin S can be considered as 
a lattice regularization of the WZW model by the operator with the conformal 
dimension (2.1) [30]. Since scattering amplitudes in the homogeneous XXX model 
(2.1) coincides with the amplitudes in the inhomogeneous model, the matrix (2.6) 
should coincide with two-particle amplitude in the perturbed WZW model. 

The same answer for the S-matrix in the perturbed WZW model was found by 
Ahn et al[29] from phenomenologic arguments. In [29] the authors propose S-matrices 
for perturbed coset models. These results can be checked also by comparing with 
Bethe-ansatz computations for nsos-models 1311. 
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Appendix 

We use the following normalization of Fourier transform: 
tm 

a(A)  dA. 
d x  
27r 

+m 

Fourier images of functions mentioned in the main text are: 

d n m ( x )  = Wd"*(X) 

A,.(x) =A,.(x) = 2e-"1"1'2 coth (3 - sinh ' (y )  - n a m  

a^?A(x) =s*(x)d?:(x) 

sin( +j r-n)x  

sinh( :) AfA(x) = A ! 2 ( x )  = 2 coth( :) sinh( y) n L m 

1 

2 cosh( t) ' s*( x) = 
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